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Numerical integration over smooth surfaces
in R3 via class Sm variable transformations.

Part I: Smooth integrands

Avram Sidi

Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000, Israel
Abstract

Class Sm variable transformations with integer m for finite-range integrals were

introduced by the author about a decade ago. These transformations ‘‘periodize’’ the

integrand functions in a way that enables the trapezoidal rule to achieve very high accu-

racy, especially with even m. In a recent work by the author, these transformations were

extended to arbitrary real m, and their role in improving the convergence of the trape-

zoidal rule for different classes of integrands was studied in detail. It was shown that,

with m chosen appropriately, exceptionally high accuracy can be achieved by the trap-

ezoidal rule. For example, if the integrand function is smooth on the interval of integra-

tion including the endpoints, and vanishes at the endpoints, then excellent results are

obtained by taking 2m to be an odd integer. In the present work, we consider the use

of these transformations in the computation of integrals on surfaces of simply connected

bounded domains in R3, in conjunction with the product trapezoidal rule. We assume

these surfaces are smooth and homeomorphic to the surface of the unit sphere, and

we treat the cases in which the integrands are smooth. We propose two approaches,

one in which the product trapezoidal rule is applied with the integrand as is, and

another, in which the integrand is preprocessed before the rule is applied. We give thor-

ough analyses of the errors incurred in both approaches, which show that surprisingly
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high accuracies can be achieved with suitable values of m. We also illustrate the theoret-

ical results with numerical examples.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this work, we present a new approach to the numerical evaluation of inte-

grals over smooth surfaces in three dimensions. We treat integrals of the form

I ½f � ¼
Z Z
S

f ðQÞdAS ; ð1:1Þ

where S is the surface of an arbitrary bounded and simply connected domain in

R3 and dAS is the associated area element. We assume that S is infinitely

smooth and homeomorphic to the surface of the unit sphere, which we shall
denote by U throughout. We also assume that the transformation from U

to S is one-to-one and infinitely differentiable and that it has a nonsingular

Jacobian matrix.

The integrand functions f(Q) we consider are smooth over S. (In another

work [19], we treat the cases in which the integrand functions have point sin-

gularities of the single-layer and double-layer types over S.)

Such integrals, with smooth or singular f(Q), arise in boundary integral

equation formulations of partial differential equations in continuum problems.
For a review of this subject, see Atkinson [2] and [3, Chapter 5].

Here are the steps of the basic method of integration we present in this

work:

(i) Using the mapping of U, the surface of the unit sphere, to S, express I[f]

as an integral over U.

(ii) Express the (transformed) integral over U in terms of the standard spher-

ical coordinates h and /, 0 6 h 6 p and 0 6 / 6 2p. The resulting inte-

gral can be written in the form I ½f � ¼
R p
0

R 2p
0

F ðh;/Þd/
h i

dh.

(iii) Transform h by a variable transformation h = W(t) � pw(t), 0 6 t 6 1,

where w(t) is in the extended class Sm of Sidi [22]. The result of this is

I ½f � ¼
R 1

0

R 2p
0

F ðWðtÞ;/Þd/
h i

W0ðtÞdt.
(iv) Approximate the final integral in the variables t and / by the product

trapezoidal rule.
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Note. The basic method above, although quite effective as is, can be improved

substantially by applying it to I[f � r] for some suitably (and simply) chosen

function r(Q), such that I[r] is much less expensive to compute than I[f]. We will

discuss the details of this improved procedure later.

The complete mathematical description of the basic method is given in the

next paragraph.

Let Q = (n,g,f) in (1.1), and let U, the surface of the unit sphere, be given as

in

U :¼ fðx; y; zÞ : x2 þ y2 þ z2 ¼ 1g: ð1:2Þ

Denote the mapping from U to S via

q ¼ ½n; g; f�T ¼ ½nðx; y; zÞ; gðx; y; zÞ; fðx; y; zÞ�T; ð1:3Þ

so that the Jacobian matrix of this mapping is

Jðx; y; zÞ ¼

on=ox on=oy on=oz

og=ox og=oy og=oz

of=ox of=oy of=oz

2664
3775: ð1:4Þ

Thus, J(x,y,z) is known as a function of x, y, z. We also let

r ¼ ½x; y; z�T; ð1:5Þ

and then switch to the spherical coordinates h and / as in

ðx; y; zÞ ¼ ðsin h cos/; sin h sin/; cos hÞ: ð1:6Þ

Now, by expressing I[f] as an integral over U via (1.3), and by introducing the

variables h and / on U as in (1.6), we are actually generating a two-parameter

representation of S, these parameters being h and /. Thus, in terms of h and /,
the area element dAS on S becomes

dAS ¼
oq

oh
� oq

o/

���� ����dhd/; ð1:7Þ

where kpk ¼
ffiffiffiffiffiffiffiffi
pTp

p
for p 2 R3. We, therefore, have

I ½f � ¼
Z p

0

Z 2p

0

F ðh;/Þd/
� �

dh; F ðh;/Þ � f ðn; g; fÞ oq

oh
� oq

o/

���� ����: ð1:8Þ

The vectors oq/oh and oq/o/ can be computed by the chain rule, as in

oq

oh
¼ J

or

oh
;

oq

o/
¼ J

or

o/
: ð1:9Þ
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Here, J stands for J(x,y,z) for short, and

or

oh
¼

cos h cos/

cos h sin/

� sin h

2664
3775; or

o/
¼ sin h

� sin/

cos/

0

2664
3775: ð1:10Þ

Finally, we make the further variable transformation h = W(t) = pw(t), with
w 2 Sm for some suitable m to be chosen later, obtaining

I ½f � ¼
Z 1

0

Z 2p

0

bF ðt;/Þd/� �
dt; bF ðt;/Þ ¼ F ðWðtÞ;/ÞW0ðtÞ; ð1:11Þ

and approximate the transformed integral via the product trapezoidal rule

bT n;n0 ½f � ¼ hh0
Xn�1

j¼1

Xn0
k¼1

bF ðjh; kh0Þ; h ¼ 1

n
; h0 ¼ 2p

n0
; ð1:12Þ

where n and n 0 are positive integers. We let n 0 � an as n ! 1 for some fixed a
in the sequel.

Note that the product trapezoidal rule for an arbitrary integralR 1

0

R 2p
0
bF ðt;/Þd/h i

dt, where bF is continuous for (t,/) 2 [0, 1] · [0,2p], is actu-

ally hh0
P00n

j¼0

P00n0
k¼0
bF ðjh; kh0Þ, where the double prime on a summation means

that the first and the last terms in the summation are to be multiplied by 1/2.bT n;n0 ½f � in (1.12) becomes the product trapezoidal rule in casebF ð0;/Þ ¼ 0 ¼ bF ð1;/Þ and bF ðt;/Þ is 2p-periodic in /, which is the case we have

here starting with m = 1.

The variable transformation h = W(t) above turns out to be very effective in

that the accuracy of bT n;n0 ½f � increases with increasing m, and in a subtle way.
For odd integer values of 2m, unusually high accuracies are achieved, as we will

see later.

The plan of this paper is as follows: In the remainder of this section, we dis-

cuss briefly the subject of variable transformations in numerical integration. In

Section 2, we derive the form of the integral that is obtained following the var-

ious mappings. Following that, in Section 3, we give a complete asymptotic

analysis as h ! 0 of the product rule bT n;n0 ½f �. The main result of this section

is Theorem 3.3. In Section 4, we give an improved approach to the computa-
tion of I[f]. In this approach, the integrand is preprocessed by subtracting from

it a suitably chosen function, as mentioned in the note above, and the product

rule is applied to this modified integrand. The main result of Section 4 is Theo-

rem 4.2. We also provide numerical examples with both approaches, and verify

the validity of our theoretical results.

For easy reference, we have also included three appendices that provide a

short discussion, based on the paper [22], of the Euler–Maclaurin expansions

relevant to this work and of the extended class Sm. Of these, Appendix A gives
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the Euler–Maclaurin expansions. Appendix B describes the extended class Sm

generally and gives the extended sinm-transformation, a representative of the

extended class Sm, which we have used in our computations. Appendix C sum-

marizes the analytic properties of transformations in the extended class Sm

that pertain to the present work.

Before closing, we mention that the basic method described above is related
to a recent method of Atkinson [4]. As it turns out, the numerical performance

of our basic method is very similar to that of [4], and some of the theoretical

results of Section 3 concerning our basic method are analogous to those of

[4]. There is no analogue of our improved method and its corresponding theory

in [4], however. One of the major differences between the methods of the pres-

ent paper and that of [4] is that in the present paper, the variable h on the unit

sphere is transformed (by a variable transformation in the extended class Sm),

whereas in [4], h is ‘‘graded’’ in a special and interesting way by the introduc-
tion of a grading parameter, instead of being transformed.

Finally, this paper is partly based on the report [18] by the author.

1.1. Variable transformations in numerical integration

In order to have a better understanding of the methods presented in this

work, it is necessary to dwell briefly on the subject of variable transformations

in numerical integration.
Consider the integral

I ½f � ¼
Z 1

0

f ðxÞdx; ð1:13Þ

where f 2 C1(0,1) but is not necessarily continuous or differentiable at x = 0
and/or x = 1. f(x) may even behave singularly at the endpoints, with different

types of singularities. One very effective way of computing I[f] is by first trans-

forming it with a suitable variable transformation and next applying the trap-

ezoidal rule to the resulting transformed integral. Thus, if we make the

substitution x = w(t), where w(t) is an increasing differentiable function on

[0,1], such that w(0) = 0 and w(1) = 1, then the transformed integral is

I ½f � ¼
Z 1

0

f̂ ðtÞdt; f̂ ðtÞ ¼ uðwðtÞÞw0ðtÞ; ð1:14Þ

and the trapezoidal rule approximation to I[f] is

bQn½f � ¼ h
1

2
f̂ ð0Þ þ

Xn�1

i¼1

f̂ ðihÞ þ 1

2
f̂ ð1Þ

" #
; h ¼ 1

n
: ð1:15Þ

If, in addition, w(t) is chosen such that w(i)(0) = w(i)(1) = 0, i = 1,2, . . .,p, for
some sufficiently large p, then bQn½f �, even for moderate n, approximate I[f] with

surprisingly high accuracy. In such a case, we may have f̂ ð0Þ ¼ f̂ ð1Þ ¼ 0, andbQn½f � becomes
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bQn½f � ¼ h
Xn�1

i¼1

f̂ ðihÞ: ð1:16Þ

Variable transformations in numerical integration have been of considerable

interest lately. In the context of one-dimensional integration, they are used as a

means to improve the performance of the trapezoidal rule. In the context of

multi-dimensional integration, they are used to ‘‘periodize’’ the integrand in

all variables so as to improve the accuracy of lattice rules. (Lattice rules are

extensions of the trapezoidal rule to many dimensions.)

There is a whole collection of variable transformations in the literature of

numerical integration. We mention here the polynomial transformation of
Korobov [9], the tanh-transformation of Sag and Szekeres [15], the IMT-trans-

formation of Iri, Moriguti, and Takasawa [8], the double exponential formula

of Mori [12], the class Sm transformations (m is a positive integer) of Sidi [17],

and the polynomial transformation of Laurie [10].

In this paper, we concentrate on the class Sm transformations of the author,

which have some interesting and useful properties when coupled with the trap-

ezoidal rule. A trigonometric representative of these, namely, the sinm-transfor-

mation that was proposed also in [17], has been used successfully in
conjunction with lattice rules in multiple integration; see Sloan and Joe [23],

Hill and Robinson [7], and Robinson and Hill [14]. The sinm-transformation

has also been used in the computation of multidimensional integrals in

conjunction with extrapolation methods by Verlinden et al. [24].

Another trigonometric transformation similar to the sinm-transformation

was given by Elliott [6], and this transformation too is in the classSm with even

m. The polynomial transformation of Laurie was designed to have some of the

useful properties of class Sm transformations, but is not in Sm.
Recently, the class Sm was extended to arbitrary noninteger values of m in

Sidi [22]. Transformations in this extended class were analyzed with respect to

their use in conjunction with the trapezoidal rule, and were shown to improve

the accuracy of the resulting approximations beyond what is expected, when m

is chosen optimally.
2. The transformed integrand

In this section, we wish to carry out a preliminary study of the integrand

F(h,/) in (1.8). As we already know the nature of f(n,g,f), we concentrate

on the factor koq/oh · oq/o/k in (1.8). For simplicity of notation, we will

denote (n,g,f) by (n1,n2,n3) and (x,y,z) by (x1,x2,x3). Similarly, we denote

the mapping from U to S via

q ¼ n1ðx1; x2; x3Þ; n2ðx1; x2; x3Þ; n3ðx1; x2; x3Þ½ �T; ð2:1Þ
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and let

r ¼ ½x1; x2; x3�T; ð2:2Þ
so that, in the spherical coordinates h and /,

ðx1; x2; x3Þ ¼ ðsin h cos/; sin h sin/; cos hÞ: ð2:3Þ
Denoting

cos h cos/

cos h sin/

� sin h

264
375 ¼ j;

� sin/

cos/

0

264
375 ¼ k ð2:4Þ

in (1.10), and also letting

K ¼ Jj; L ¼ Jk; ð2:5Þ
(1.9) becomes

oq

oh
¼ K;

oq

oh
¼ L sin h; ð2:6Þ

and we have

oq

oh
� oq

o/
¼ M sin h; M ¼ K� L: ð2:7Þ

Letting also K = [K1,K2,K3]
T and L = [L1,L2,L3]

T, we have

M ¼ ½r23; r31; r12�T; rij ¼ KiLj � KjLi: ð2:8Þ
Now, by (2.5), there follows

rij ¼
X3
r¼1

X3
s¼1

J irJ jssrs; srs ¼ jrks � jskr: ð2:9Þ

Here Jij is the (i, j) element of the matrix J.
Obviously, ssr = �srs and srr = 0. This means that there are really three inde-

pendent srs, namely, s12, s23, and s31. By (2.4), these are

s12 ¼ cos h ¼ x3; s23 ¼ sin h cos/ ¼ x1; s31 ¼ sin h sin/ ¼ x2:

Thus, we can express sij, for all i and j, as in

sij ¼
X3
k¼1

�ijkxk;

where �123 = 1, and �ijk, 1 6 i, j,k 6 3, is odd under an interchange of any two

of the indices i, j, k, which means that �ijk = 0 when any two of these indices

have the same value. Substituting these in (2.9), and invoking Jij = oni/oxj,
we obtain
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rij ¼
X3
r¼1

X3
s¼1

X3
k¼1

�rsk
oni
oxr

onj
oxs

xk ¼ rni �rnj
� �

� r: ð2:10Þ

Here, $u is the gradient of u(x,y,z), that is, $u = (ou/ox,ou/oy,ou/oz).

First, we note by (2.10) that rij, as functions of (x1,x2,x3), are all in C1(U)

because oni/oxj 2 C1(U) by the assumptions we have made on the mapping

from U to S.

Next, we wish to show that r12, r23, and r31 cannot vanish simultaneously at

any point on U. An important implication of this for us is that Mðx; y; zÞ ¼
r2
23 þ r2

31 þ r2
12 is strictly positive on U, as a result which,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx; y; zÞ

p
is in

C1(U). Suppose, to the contrary, that at some point (a,b,c) 2 U, r12 = r23 =
r31 = 0. This means that all three vectors $ni(a,b,c), i = 1,2,3, lie in a plane
orthogonal to the vector [a,b,c]T, hence lie in the same plane, thus becoming

linearly dependent. This is equivalent to detJ(a,b,c) = 0, which contradicts

our assumption that the matrix J(x,y,z) is nonsingular on U.

We have thus proved the following result:

Theorem 2.1. With S as in the first paragraph of Section 1, there holds

oq

oh
� oq

o/
¼ ½r23; r31; r12�T sin h;

oq

oh
� oq

o/

���� ���� ¼ Rðx; y; zÞ sin h; ð2:11Þ

where

Rðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
23 þ r2

31 þ r2
12

q
; rij ¼ rni �rnj

� �
� r: ð2:12Þ

R(x,y, z) is strictly positive on U and is in C1(U). Consequently, R(x,y, z), as a

function of /, is infinitely differentiable on (�1,1) and 2p-periodic as well.

Note that the result of Theorem 2.1 is true whether S has symmetry prop-

erties or not.

As an example, let us consider the case in which S is the surface of an ellip-

soid, which we take to be

S ¼ ðn; g; fÞ : ðn=aÞ2 þ ðg=bÞ2 þ ðf=cÞ2 ¼ 1
n o

: ð2:13Þ

Here, a, b, c are the lengths of the semi-axes of this ellipsoid. The mapping

from U to S can be taken to be (n,g,f) = (ax,by,cz). In this case, J =

diag(a,b,c) hence is nonsingular on U. This example was treated in [4], where
the result

Rðx; y; zÞ ¼ ðbcxÞ2 þ ðcayÞ2 þ ðabzÞ2
h i1=2

; ð2:14Þ

is also given. This result can also be obtained from Theorem 2.1. It is easy to see

thatR(x,y,z) in this case is inC1(U), and this is in accordance with Theorem 2.1.
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3. Study of bTn;n0 ½f � for smooth f(Q)

Let us combine (2.11) and (1.8), and rewrite the latter in the form

I ½f � ¼
Z p

0

Z 2p

0

F ðh;/Þd/
� �

dh ¼
Z p

0

vðhÞdh;

vðhÞ ¼
Z 2p

0

F ðh;/Þd/; F ðh;/Þ ¼ wðx; y; zÞ sin h;

wðx; y; zÞ ¼ f ðn; g; fÞRðx; y; zÞ:

Transforming the variable h via h = W(t), where W(t) = pw(t) with w 2 Sm for

some m, we also have

I ½f � ¼
Z 1

0

Z 2p

0

bF ðt;/Þd/� �
dt ¼

Z 1

0

v̂ðtÞdt;

v̂ðtÞ ¼
Z 2p

0

bF ðt;/Þd/; bF ðt;/Þ ¼ F ðWðtÞ;/ÞW0ðtÞ;

v̂ðtÞ ¼ vðWðtÞÞW0ðtÞ:

By our assumptions that (i) f(n,g,f) is infinitely differentiable over S and (ii)

the mapping from U to S is infinitely differentiable on U, we have that f(n,g,f)
is infinitely differentiable over U as a function of (x,y,z). From Theorem 2.1,

we also have that R(x,y,z) is infinitely differentiable on U. Consequently,

w(x,y,z) is infinitely differentiable on U. Therefore, as a function of the vari-

able /, F(h,/) is infinitely differentiable on (�1,1) and also 2p-periodic.

Therefore, bF ðt;/Þ, as a function /, is also infinitely differentiable on

(�1,1) and is also 2p-periodic.
Let us rewrite (1.12) in the form

bT n;n0 ½f � ¼ h
Xn�1

j¼1

h0
Xn0
k¼1

bF ðjh; kh0Þ" #
; h ¼ 1

n
; h0 ¼ 2p

n0
:

Now, h0
Pn0

k¼1
bF ðt; kh0Þ is the trapezoidal rule approximation to the integralR 2p

0
bF ðt;/Þd/. Therefore, by the Euler–Maclaurin summation formula in The-

orem A.1, and by the fact that bF ðt;/Þ, as a function /, is also infinitely differ-

entiable on (�1,1) and also 2p-periodic, we have

h0
Xn0 bF ðt; kh0Þ ¼ Z 2p bF ðt;/Þd/þ Rmðt; h0Þ; ð3:1Þ

k¼1 0
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where

jRmðt; h0Þj 6 2p
B2m

ð2mÞ! max
06t61
06/62p

o2m

o/2m
bF ðt;/Þ���� ����

0@ 1Ah02m

� Cmh
02m for every m; ð3:2Þ

where Cm is a constant independent of t. Consequently,bT n;n0 ½f � ¼ eT n½f � þOðh0lÞ as h0 ! 0; for every l > 0: ð3:3Þ
where

eT n½f � ¼ h
Xn�1

j¼1

Z 2p

0

bF ðjh;/Þd/ ¼ h
Xn�1

j¼1

v̂ðjhÞ: ð3:4Þ

Thus, if we let n 0 � anb as n ! 1 for some fixed positive a and b, then (3.4)

becomesbT n;n0 ½f � ¼ eT n½f � þOðhlÞ as h ! 0; for every l > 0: ð3:5Þ

In the sequel, we let n 0 � anb as n ! 1.

Thus, we need to concern ourselves only with the asymptotic expansion as

h ! 0 of eT n½f �, the trapezoidal rule approximation to the integral
R 1

0
v̂ðtÞdt.

By Theorem A.2, we need to study v̂ðtÞ as t ! 0+ and t ! 1�. For this, we need

to expand bF ðt;/Þ about t = 0 and t = 1. This we do by expanding v(h) about
h = 0 and h = p, for which we need to expand F(h,/) about h = 0 and h = p.

Throughout, we make use of the fact that the sequence fðsin hÞig1i¼1 is a bon-

afide asymptotic scale both as h ! 0 and as h ! p.
Now, by (1.6), x = y = 0 and z = 1 when h = 0, and x = y = 0 and z = �1

when h = p. Therefore, w(x,y,z) has the asymptotic expansions

wðx; y; zÞ �
X1
i¼0

X1
j¼0

X1
k¼0

wði;j;kÞð0; 0; 1Þ
i!j!k!

xiyjðz� 1Þk as h ! 0;

wðx; y; zÞ �
X1
i¼0

X1
j¼0

X1
k¼0

wði;j;kÞð0; 0;�1Þ
i!j!k!

xiyjðzþ 1Þk as h ! p;

where

wði;j;kÞðx0; y0; z0Þ ¼
oiþjþkw
oxi oyj ozk

����
ðx;y;zÞ¼ðx0;y0;z0Þ

:

These are simply the Taylor series expansions of w(x,y,z) about (0,0,±1).

Using the short-hand notation
P

i;j;kP0 ¼
P1

i¼0

P1
j¼0

P1
k¼0, and invoking (1.6),

these expansions can be rewritten in the form
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wðx; y; zÞ �
X
i;j;kP0

eðþÞ
i;j;kcos

i/ sinj/ðsin hÞiþjðcos h� 1Þk as h ! 0;

wðx; y; zÞ �
X
i;j;kP0

eð�Þ
i;j;kcos

i/ sinj/ðsin hÞiþjðcos hþ 1Þk as h ! p;

where

eð�Þ
i;j;k ¼

wði;j;kÞð0; 0;�1Þ
i!j!k!

:

Therefore,

F ðh;/Þ �
X
i;j;kP0

eðþÞ
i;j;kcos

i/ sinj/ðsin hÞiþjþ1ðcos h� 1Þk as h ! 0;

F ðh;/Þ �
X
i;j;kP0

eð�Þ
i;j;kcos

i/ sinj/ðsin hÞiþjþ1ðcos hþ 1Þk as h ! p:
ð3:6Þ

The following general lemma will be of use in the sequel.

Lemma 3.1. Let M(/) be an even and p-periodic function of /. Define u(/) =
M(/)cosi/ sinj/ and qi;j ¼

R 2p
0

uð/Þd/. If i or j or both are odd integers, then

qi,j = 0. Thus, qi,j is possibly nonzero only if i and j are both even integers.
Proof. First, note that, because u(/) is 2p-periodic, we have that

q � qi;j ¼
R p
�p uð/Þd/. With l and m nonnegative integers, there are three cases

to consider: (a) i = 2l + 1 and j = 2m + 1, (b) i = 2l and j = 2m + 1, and (c)

i = 2l + 1 and j = 2m. Let us also denote K(/) = M(/) cos2l/ sin2m/. Obviously,
K(/) is also an even and p-periodic function of /.

In case (a), uð/Þ ¼ Kð/Þ cos/ sin/ ¼ 1
2
Kð/Þ sin 2/, and is an odd function.

Therefore, q = 0. In case (b), u(/) = K(/) sin/, and is an odd function.

Therefore, q = 0. In case (c), u(/) = K(/) cos/, and is an even function. Thus,

q ¼ 2
R p
0
Kð/Þ cos/. By the fact that K(/) is even and p-periodic, we can write

this as q ¼ 2
R p
0
Kðp� /Þ cos/. Upon making the variable transformation /

= p � x in the last integral, we obtain q ¼ �2
R p
0
KðxÞ cosxdx ¼ �q. This

implies q = 0. h
Theorem 3.2. When f(n,g,f) is smooth over S, vðhÞ ¼
R 2p
0

F ðh;/Þd/ has the

asymptotic expansions

vðhÞ �
X
i;j;kP0

AðþÞ
i;j;kðsin hÞ

2iþ2jþ1ðcos h� 1Þk as h ! 0;

vðhÞ �
X
i;j;kP0

Að�Þ
i;j;kðsin hÞ

2iþ2jþ1ðcos hþ 1Þk as h ! p;
ð3:7Þ
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where Að�Þ
i;j;k are constants given by

Að�Þ
i;j;k ¼ eð�Þ

2i;2j;k

Z 2p

0

ðcos/Þ2iðsin/Þ2j d/; i; j; k ¼ 0; 1; . . .

Consequently,

vðhÞ �
X1
i¼0

lðþÞ
i h2iþ1 as h ! 0;

vðhÞ �
X1
i¼0

lð�Þ
i ðp� hÞ2iþ1 as h ! p;

ð3:8Þ

for some constants lð�Þ
i .
Proof. To prove the first part of the theorem, we substitute (3.6) in the integralR 2p
0

F ðh;/Þd/, interchange the order of integration and summation (which is
allowed because the integration is over the finite interval [0, 2p]), and invoke

Lemma 3.1. To prove the second part, we proceed as follows. Because

sin h ¼ sinðp� hÞ; cos h� 1 ¼ 2sin2 h
2
;

cos hþ 1 ¼ 2cos2
h
2
¼ sin2 p� h

2
;

it is clear that the asymptotic expansions of v(h) as h ! 0 and as h ! p contain

only odd powers of h and (p � h), respectively. This proves the second part of

the theorem. h

Making now the variable transformation h = pw(t) in
R p
0
vðhÞdh, where

w 2 Sm, and invoking first Theorem 3.2 and next part (i) of Theorem C.1

and part(iii) of Corollary C.2, we obtain the following main result. We leave

the details of the proof to the reader.

Theorem 3.3. With w(t) in Sm, and with n 0 � anb as n ! 1 for some fixed

positive a and b, there holds

bT n;n0 ½f � � I ½f � ¼
Oðh4mþ4Þ as h ! 0; if 2m odd integer;

Oðh2mþ2Þ as h ! 0; otherwise:

(

For 2m an odd integer, we also have the complete Euler–Maclaurin expansion

bT n;n0 ½f � � I ½f � þ
X1
i¼0

rih
4mþ4þ2i as h ! 0:
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For integer values of m, we havebT n;n0 ½f � � I ½f � þ
X1
i¼0

rih
2mþ2þ2i as h ! 0:

For all other values of m, we have

bT n;n0 ½f � � I ½f � þ
X1
k¼1

2km 62f1;3;5;...g

X1
i¼0

rk;ih
2kðmþ1Þþ2i as h ! 0:

Note the remarkable accuracy that bT n;n0 ½f � can achieve when 2m is an odd

integer. This is especially due to the fact that the asymptotic expansions of

v(h), as h ! 0 and h ! p, do not contain the powers h2i and (p � h)2i,
i = 0,1, . . ., respectively.
3.1. A numerical example

Let S be the surface of the ellipsoid given in (2.13) with (a,b,c) = (1.0,0.5,

0.75), and let f(Q) = f(n,g,f) = exp(n + 2g + 3f), and consider the integral

I ½f � ¼
Z Z
S

f ðQÞdAS ¼ 18:34041919200 � � � :

This is one of the numerical examples treated in [4].
The transformation we use for the variable h is the sinm-transformation for

various values of m. Clearly, the integrand f(n,g,f) is infinitely differentiable

over S, hence Theorems 3.2 and 3.3 apply.

The numerical results in Tables 1 and 2, which were computed in quadruple-

precision arithmetic, illustrate the result of Theorem 3.3 very clearly. Table 1

gives the relative errors in the bT n½f � � bT n;n½f �, n = 2k, k = 1,2, . . ., 9, for

m = j/2, j = 3,4, . . ., 12. Table 2 presents the numbers

lm;k ¼
1

log 2
� log jbT 2k ½f � � I ½f �j

jbT 2kþ1 ½f � � I ½f �j

 !
;

for the same values of m and for k = 1,2, . . ., 8. It is seen that, with increasing k,

the lm,k are tending to 4m + 4 when 2m is an odd integer and to 2m + 2 other-
wise, completely in accordance with Theorem 3.3. (With the floating-point

arithmetic we are using, this convergence seems to be less visible for relatively

large m for which 2m is an odd integer, however.)
4. Further improvement for smooth f(Q)

In the preceding section, we showed that, in case of smooth f(Q), the perfor-
mance of bT n;n0 ½f � can be improved substantially by choosing wðtÞ 2 Sm with 2m



Table 1

Relative errors in the rules bT n½f � ¼ bT n;n½f � for the integral of Section 3.1, obtained with n = 2k, k = 1(1)10, and with the sinm-transformation using

m = 1.5(0.5)6

n m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 m = 4.0 m = 4.5 m = 5.0 m = 5.5 m = 6.0

2 4.40D�01 3.77D�01 3.20D�01 2.66D�01 2.17D�01 1.70D�01 1.25D�01 8.29D�02 4.24D�02 3.54D�03

4 1.20D�01 1.82D�01 2.28D�01 2.57D�01 2.72D�01 2.76D�01 2.71D�01 2.60D�01 2.44D�01 2.26D�01

8 2.27D�06 2.26D�04 1.44D�03 4.29D�03 9.05D�03 1.57D�02 2.42D�02 3.42D�02 4.54D�02 5.75D�02

16 7.33D�07 1.24D�06 6.71D�07 1.30D�07 1.85D�06 6.95D�06 1.68D�05 3.22D�05 5.23D�05 7.43D�05

32 2.67D�11 7.85D�09 2.70D�11 5.62D�11 2.67D�11 2.72D�11 2.26D�11 1.56D�11 3.60D�12 1.08D�11

64 3.82D�16 1.22D�10 1.33D�19 3.22D�13 1.53D�19 1.45D�15 1.52D�19 9.80D�18 9.74D�20 1.90D�20

128 3.72D�19 1.90D�12 1.19D�24 1.25D�15 1.31D�29 1.41D�18 3.36D�34 2.40D�21 0.00D+00 5.80D�24

256 3.63D�22 2.97D�14 7.22D�29 4.89D�18 3.36D�34 1.37D�21 5.04D�34 5.85D�25 0.00D+00 3.52D�28

512 3.55D�25 4.64D�16 3.70D�33 1.91D�20 6.72D�34 1.34D�24 6.72D�34 1.43D�28 1.68D�34 2.10D�32
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Table 2

The numbers lm;k ¼ 1
log 2

� log jbT
2k ½f �I ½f �j

jbT
2kþ1 ½f ��I½f �j

� 	
, for k = 1(1)9 and m = 1.5(0.5)6, for the integral of

Section 3.1, where bT n½f � are those of Table 1

k m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 m = 4.0 m = 4.5 m = 5.0 m = 5.5 m = 6.0

1 1.871 1.053 0.488 0.049 �0.331 �0.702 �1.114 �1.648 �2.527 �5.996

2 15.698 9.649 7.310 5.907 4.911 4.131 3.485 2.925 2.427 1.973

3 1.628 7.510 11.065 15.010 12.255 11.144 10.493 10.054 9.762 9.596

4 14.747 7.306 14.598 11.174 16.080 17.963 19.503 20.980 23.791 22.711

5 16.089 6.011 27.594 7.450 27.379 14.196 27.149 20.597 25.141 29.083

6 10.004 6.001 16.780 8.004 33.442 10.008 49.684 11.994 49.042 11.680

7 10.001 6.000 14.004 8.001 16.253 10.002 * 12.004 * 14.006

8 10.001 6.001 14.184 8.001 * 10.001 * 11.996 * 14.046
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an odd integer. In this section, we continue our treatment of smooth integrands

by improving further the performance of the rule bT n;n0 . As mentioned in the

remark in Appendix C, it is desirable to get as much accuracy out of bT n;n0

for a given amount of clustering of the transformed abscissas on U. As in

the preceding section, this can be achieved for special values of m, provided

the integrand is preprocessed suitably.

Let

pðzÞ ¼ Azþ B;

A ¼ wð0; 0; 1Þ � wð0; 0;�1Þ
2

; B ¼ wð0; 0; 1Þ þ wð0; 0;�1Þ
2

:

Then p(±1) = w(0,0,±1). By the fact that I ½f � ¼
R p
0

R 2p
0

wðx; y; zÞd/
h i

sin hdh,
we can also write

I ½f � ¼ J ½w� p� þ J ½p�;

J ½w� p� ¼
Z p

0

Z 2p

0

wðx; y; zÞ � pðzÞf gd/
� �

sin hdh;

J ½p� ¼
Z p

0

Z 2p

0

pðzÞd/
� �

sin hdh ¼ 4pB ¼ 2p wð0; 0; 1Þ þ wð0; 0;�1Þ½ �:

We now apply the product trapezoidal rule to the integral J[w � p], to

obtain bT n;n0 ½f � p=R� as the approximation to J[w � p] = I[f � p/R]. Thus, the

approximation to I[f] is the rule

�T n;n0 ½f � ¼ bT n;n0 ½f � p=R� þ J ½p�
that is also given as in

�T n;n0 ½f � ¼ bT n;n0 ½f � þ 4pB� 2pB h
Xn�1

j¼1

sinðWðj=nÞÞW0ðj=nÞ
" #

: ð4:1Þ
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This follows from the fact that, for the function u(x,y,z) = z, bT n;n0 ½u=R� ¼ 0.

Here, we recall that W(t) = pw(t) with w 2 Sm.

The analysis of this rule is identical to that of bT n;n0 ½f �; we just have to replace

w(x,y,z) by w(x,y,z) � p(z) everywhere. Because

pðzÞ ¼ wð0; 0; 1Þ þ Aðz� 1Þ ¼ wð0; 0;�1Þ þ Aðzþ 1Þ;
we have, in the notation of Section 3,

wðx; y; zÞ � pðzÞ � �Aðz� 1Þ þ
X
i;j;kP0

iþjþkP1

wði;j;kÞð0;0;1Þ
i!j!k!

xiyjðz� 1Þk as h! 0;

wðx;y; zÞ� pðzÞ ��Aðzþ 1Þþ
X
i;j;kP0
iþjþkP1

wði;j;kÞð0;0;�1Þ
i!j!k!

xiyjðzþ 1Þk as h! p:

Note that, in these asymptotic expansions, the terms w(0,0,0)(0,0,±1) have

disappeared and the terms w(0,0,1)(0,0,±1)(z � 1) have been modified to read

[w(0,0,1)(0, 0,±1) � A](z � 1).

Let now Fimp(h,/) = F(h,/) � p(z) sinh and vimpðhÞ ¼
R 2p
0

F impðh;/Þd/, so
that J ½w� p� ¼

R p
0
vimpðhÞdh. With this notation, Theorem 3.2 is modified as

follows:

Theorem 4.1. When f(n,g,f) is smooth over S, vimp(h) has the asymptotic

expansions

vimpðhÞ �
X
i;j;kP0
iþjþkP1

~A
ðþÞ
i;j;kðsin hÞ

2iþ2jþ1ðcos h� 1Þk as h ! 0;

vimpðhÞ �
X
i;j;kP0
iþjþkP1

~A
ð�Þ
i;j;kðsin hÞ

2iþ2jþ1ðcos hþ 1Þk as h ! p;
ð4:2Þ

where

~A
ð�Þ
0;0;1 ¼ Að�Þ

0;0;1 � 2pA; ~A
ð�Þ
i;j;k ¼ Að�Þ

i;j;k when ði; j; kÞ 6¼ ð0; 0; 1Þ;

with Að�Þ
i;j;k as in Theorem 3.2. Consequently,

vimpðhÞ �
X1
i¼1

lðþÞ
i h2iþ1 as h ! 0;

vimpðhÞ �
X1
i¼1

lð�Þ
i ðp� hÞ2iþ1 as h ! p;

ð4:3Þ

for some constants lð�Þ
i .
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As can be seen from (4.3), the asymptotic expansions of vimp(h) as h ! 0 and

h ! p start with the terms h3 and (p � h)3, respectively, the next terms being h5

and (p � h)5. In view of this, and by Theorem C.1, we have the following opti-

mal result concerning the rule �T n;n0 ½f � that approximates I[f]:

Theorem 4.2. With w(t), in Sm, and with n 0 � anb as n ! 1 for some fixed
positive a and b, there holds

�T n;n0 ½f � � I ½f � ¼
Oðh6mþ6Þ as h ! 0; if 4m odd integer;

Oðh4mþ4Þ as h ! 0; otherwise:

(
When 4m is an odd integer, we also have the complete asymptotic expansion

�T n;n0 ½f � � I ½f � þ
X1
i¼0

rih
6mþ6þ2i þ

X1
i¼0

r0
ih

8mþ8þ2i

þ
X1
i¼0

r00
i h

10mþ10þ2i as h ! 0:

For example, in case m = 0.25, the expansion in this theorem contains the

powers h7.5, h9.5, h10, h11.5, h12, h12.5, . . .
4.1. A numerical example

We have applied the improved method above to the example of Section 3.1.

The transformation we use for the variable h is again the sinm-transformation

for various values of m.

The numerical results in Tables 3 and 4, which were computed in quadruple-

precision arithmetic, illustrate the result of Theorem 4.2 very clearly. Table 3

gives the relative errors in the �T n½f � � �T n;n½f �, n = 2k, k = 1,2, . . ., 9, for

m = �0.25 and m = 0.25 (0.25)2.25. Table 4 presents the numbers

lm;k ¼
1

log 2
� log j�T 2k ½f � � I ½f �j

j�T 2kþ1 ½f � � I ½f �j

� 	
;

for the same values of m and for k = 1,2, . . ., 8. It is seen that, with increasing k,

the lm,k are tending to 6m + 6 when 4m an odd integer, that is, when m = j/

2 � 3/4, j = 1,2, . . ., and to 4m + 4 otherwise, completely in accordance with

Theorem 4.2. (With the floating-point arithmetic we are using, this convergence

seems to be less visible for relatively large m for which 4m is an odd integer,

however.)

We would like to note also that, when m = �0.25, class Sm variable trans-
formations have asymptotic behavior w(t) � at0.75 as t ! 0+ and w(t) � 1 �
a(1 � t)0.75 as t ! 1�. This means that the transformed abscissas hj = W(j/n)



Table 3

Relative errors in the rules �T n½f � ¼ �T n;n½f � for the integral of Sections 3.1 and 4.1, obtained with n = 2k, k = 1(1)9, and with the sinm-transformation

using m = �0.25 and m = 0.25(0.25)2.25

n m = �0.25 m = 0.25 m = 0.5 m = 0.75 m = 1 m = 1.25 m = 1.5 m = 1.75 m = 2.0 m = 2.25

2 2.84D+00 9.10D+00 1.17D+01 1.42D+01 1.64D+01 1.85D+01 2.05D+01 2.23D+01 2.41D+01 2.58D+01

4 3.73D�01 2.98D�01 4.07D�01 7.01D�01 1.14D+00 1.67D+00 2.27D+00 2.89D+00 3.53D+00 4.17D+00

8 4.69D�03 4.19D�03 4.01D�03 3.95D�03 3.09D�03 1.50D�03 4.46D�05 1.58D�04 3.51D�03 1.18D�02

16 2.97D�05 1.35D�05 1.11D�05 1.35D�05 1.35D�05 1.34D�05 1.34D�05 1.35D�05 1.35D�05 1.32D�05

32 6.20D�07 7.20D�10 3.68D�08 4.96D�10 8.26D�10 4.96D�10 4.91D�10 4.96D�10 4.96D�10 4.96D�10

64 2.59D�08 1.22D�12 5.82D�10 2.36D�16 1.28D�12 2.68D�18 4.94D�15 2.81D�18 3.24D�17 2.81D�18

128 1.12D�09 6.70D�15 9.09D�12 1.65D�19 5.00D�15 1.07D�23 4.81D�18 1.45D�27 7.16D�21 3.57D�31

256 4.93D�11 3.70D�17 1.42D�13 1.14D�22 1.95D�17 9.20D�28 4.69D�21 4.31D�32 1.75D�24 0.00D+00

512 2.17D�12 2.04D�19 2.22D�15 7.85D�26 7.63D�20 4.31D�32 4.58D�24 2.47D�32 4.26D�28 3.08D�33
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Table 4

The numbers lm;k ¼ 1
log 2

� log j�T
2k ½f ��I ½f �j

j�T
2kþ1 ½f ��I ½f �j


 �
, for k = 1(1)9 and m = �0.25 and m = 0.25(0.25)2.25, for the integral of Sections 3.1 and 4.1, where �T n½f �

are those of Table 3

k m = �0.25 m = 0.25 m = 0.5 m = 0.75 m = 1 m = 1.25 m = 1.5 m = 1.75 m = 2.0 m = 2.25

1 2.925 4.932 4.850 4.338 3.851 3.468 3.176 2.950 2.772 2.629

2 6.313 6.152 6.667 7.471 8.523 10.123 15.634 14.159 9.973 8.470

3 7.305 8.279 8.503 8.198 7.836 6.801 1.729 3.554 8.029 9.795

4 5.581 14.193 8.230 14.728 14.000 14.727 14.741 14.728 14.727 14.705

5 4.581 9.209 5.983 21.001 9.332 27.461 16.602 27.396 23.870 27.396

6 4.529 7.505 6.001 10.485 8.002 17.940 10.004 30.850 12.141 42.837

7 4.510 7.501 6.000 10.501 8.000 13.503 10.001 15.038 12.002 *
8 4.504 7.500 6.000 10.500 8.000 14.280 10.000 0.893 12.001 *

6
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4
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are not clustered near the endpoints h = 0 and h = p; in fact, the hj are less

dense at the endpoints than in the middle of [0,p] in this case.
5. Concluding remarks

In this work, we have described numerical quadrature formulas based on the

trapezoidal rule for computing integrals of smooth functions over smooth sur-

faces in R3 that are homeomorphic to the unit sphere. These formulas are ob-

tained as follows: We first transform the integrals to the unit sphere, and

express them in terms of the standard spherical coordinates h and /, 0 6 h 6 p
and 0 6 / 6 2p. We then transform the variable h via h = pw(t), 0 6 t 6 1,

where w(t) is a transformation in the class Sm. Finally, we apply the product

trapezoidal rule to the integral in t and /. We have shown that, when 2m is
an odd integer, the error in this formula is O(h4m+4). We have also described

an improved method, based on the same quadrature formula, in which we first

subtract from the integrand a suitable function (depending on the integrand

and the surface on which we are integrating), whose integral is known, and ap-

ply the same product trapezoidal rule above to this preprocessed integrand.

This time, the error is O(h6m+6), provided m is chosen such that 4m is an

odd integer.
Acknowledgement

The author wishes to thank Professor Kendall E. Atkinson for making

available his lecture notes that preceded [4] and for a very interesting discussion

that inspired this work.
Appendix A. Euler–Maclaurin expansions

Euler–Maclaurin expansions concerning the trapezoidal rule approxima-

tions of finite-range integrals
R b
a uðxÞdx are the main analytical tool we use in

our study. For the sake of easy reference, we reproduce here the relevant

Euler–Maclaurin expansions as Theorems A.1 and A.2. Of these, Theorem A.1,

concerns the integrals
R b
a uðxÞdx in the case the integrands u(x) are in

C2m[a,b]; this theorem can be found in most books on numerical analysis.
See, for example, Davis and Rabinowitz [5], Ralston and Rabinowitz [13],

and Atkinson [1]. See also the brief review in Sidi [20, Appendix D]. Theorem

A.2 is a special case of a very general theorem from Sidi [21], and is expressed

in terms of the asymptotic expansions of u(x) as x ! a+ and x ! b� and is

easy to write down and use.



666 A. Sidi / Appl. Math. Comput. 171 (2005) 646–674
Theorem A.1. Let u 2 C2m[a,b], and let h = (b � a)/n for n = 1,2, . . . Then

h
X00

n

i¼0

uðaþ ihÞ ¼
Z b

a
uðxÞdxþ

Xm�1

k¼1

B2k

ð2kÞ! uð2k�1ÞðbÞ � uð2k�1ÞðaÞ
� 


h2k

þ ðb� aÞ B2m

ð2mÞ! u
ð2mÞðnm;nÞh2m for some nm;n 2 ða; bÞ:

Here, Bs is the sth Bernoulli number.
Theorem A.2. Let u 2 C1(a,b), and assume that u(x) has the asymptotic

expansions

uðxÞ �
X1
s¼0

csðx� aÞcs as x ! aþ;

uðxÞ �
X1
s¼0

dsðb� xÞds as x ! b�;

where the cs and ds are distinct complex numbers that satisfy

� 1 < Rc0 6 Rc1 6 Rc2 6 � � � ; lim
s!1

Rcs ¼ þ1;

� 1 < Rd0 6 Rd1 6 Rd2 6 � � � ; lim
s!1

Rds ¼ þ1:

Assume furthermore that, for each positive integer k, u(k)(x) has asymptotic

expansions as x ! a+ and x ! b� that are obtained by differentiating those

of u(x) term by term k times. Let also h = (b � a)/n for n = 1,2, . . . Then

h
Xn�1

i¼1

uðaþ ihÞ �
Z b

a
uðxÞdxþ

X1
s¼0

cs 62f2;4;6;...g

csfð�csÞhcsþ1

þ
X1
s¼0

cs 62f2;4;6;...g

dsfð�dsÞhdsþ1 as h ! 0;

where f(z) is the Riemann Zeta function.

It is clear from Theorem A.2 that the even powers of (x � a) and (b � x), if

present in the asymptotic expansions of u(x) as x ! a+ and x ! b�, do not

contribute to the asymptotic expansion of h
Pn�1

i¼1 uðaþ ihÞ as h ! 0.

In addition, if cp is the first of the cs that is different from 2,4,6, . . ., and if dq
is the first of the ds that is different from 2,4,6, . . ., then we have the useful

observation that

h
Xn�1

i¼1

uðaþ ihÞ �
Z b

a
uðxÞdx ¼ Oðhrþ1Þ as h ! 0; r ¼ minfRcp;Rdqg:
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Appendix B. Extended class Sm transformations

Definition B.1. A function w(t) is in the extended class Sm, m arbitrary, if it

has the following properties:

1. w 2 C[0, 1] and w 2 C1(0,1); w(0) = 0, w(1) = 1, and w 0(t) > 0 on (0,1).
2. w 0(t) is symmetric with respect to t = 1/2; that is, w 0(1 � t) = w 0(t). Conse-

quently, w(1 � t) = 1 � w(t).
3. w 0(t) has the following asymptotic expansions as t ! 0+ and t! 1�:

w0ðtÞ �
X1
i¼0

�itmþ2i as t ! 0þ;

w0ðtÞ �
X1
i¼0

�ið1� tÞmþ2i
as t ! 1�;

ðB:1Þ

the �i being the same in both expansions, and �0 > 0. Consequently,

wðtÞ �
X1
i¼0

�i
tmþ2iþ1

mþ 2iþ 1
as t ! 0þ;

wðtÞ � 1�
X1
i¼0

�i
ð1� tÞmþ2iþ1

mþ 2iþ 1
as t ! 1� :

ðB:2Þ

4. Furthermore, for each positive integer k, w(k)(t) has asymptotic expansions

as t ! 0+ and t! 1� that are obtained by differentiating those of w(t) term
by term k times.
The difference between Definition B.1 and the definition of the class Sm in

[17] is that m is a positive integer in the latter, hence w 2 C1[0,1]. In Definition

B.1, w(t) is not infinitely differentiable at t = 0 and t = 1 when m is not a positive

integer. The fact that we are now allowing m to assume arbitrary values has a

beneficial effect, as we will see in Appendix C.
As was mentioned in [17], the fact that w 0(t) has the asymptotic expansions

given in (B.1)—with consecutive powers of t and (1 � t) there increasing by 2

instead of by 1—is the most important aspect of the extended class Sm.

The following result shows that the family of the extended classes Sm is

closed with respect to composition.

Lemma B.2. Let wi 2 Smi , i = 1, . . ., r, and define W(t) = w1(w2(� � �(wr(t))� � �)).
Then W 2 SM with M ¼

Qr
i¼1ðmi þ 1Þ � 1.

Before proceeding further, we mention that in case the integrand f(x) in the

integral
R 1

0
f ðxÞdx is smooth in [0,1], and we let x = w(t) with w 2 Sm, then

excellent approximations are obtained by applying the trapezoidal rule to the
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transformed integral
R 1

0
f ðwðtÞÞw0ðtÞdt when m is even, and the error in this

approximation is at worst O(n�2m�2) as n ! 1, where n + 1 is the number

of abscissas in the approximation, as shown in [17]. Now, by (B.2), w 2 Sm

behaves asymptotically (in a polynomial fashion) as in

wðtÞ � atmþ1 as t ! 0; wðtÞ � 1� að1� tÞmþ1
as t ! 1:

If, instead of class Sm transformations, we use the Korobov transformation

that also behaves asymptotically in the same way, the error in the resulting

approximations to
R 1

0
f ðxÞdx is at worst O(n�m�2) as n ! 1, when m is even.

This shows that class Sm transformations have more useful approximation

properties.

B.1. The extended sinm-transformation

The extended sinm-transformation, just as the original sinm-transformation,

is defined via

wmðtÞ ¼
HmðtÞ
Hmð1Þ

; HmðtÞ ¼
Z t

0

ðsin puÞm du: ðB:3Þ

From the equality

HmðtÞ ¼
m� 1

m
Hm�2ðtÞ �

1

pm
ðsin ptÞm�1

cos pt;

which can be obtained by integration by parts, we have the recursion relation

wmðtÞ ¼ wm�2ðtÞ �
C m

2

� �
2
ffiffiffi
p

p
C mþ1

2

� � ðsin ptÞm�1
cos pt: ðB:4Þ

Note that wm(t) is related to wm�2(t) but not to wm�1(t).

When m is a positive integer, (B.4) can be used to compute wm(t) with the

initial conditions

w0ðtÞ ¼ t and w1ðtÞ ¼ 1
2
ð1� cos ptÞ: ðB:5Þ

Thus, in this case, wm(t) can be expressed in terms of elementary functions.

For noninteger m, however, wm(t) cannot be expressed in terms of elemen-

tary functions. Even so, it can be computed rather easily in different ways.

One of the ways is by computing the integral representation of Hm(t) by

Gauss–Jacobi quadrature when m is real. This, of course, requires the availabil-

ity of the abscissas and weights of the appropriate quadrature rules.

Another way that requires no tables makes use of the fact that Hm(t) can be

represented in terms of the Gauss hypergeometric function F(a,b;c;z), which is
defined via the power series

F ða; b; c; zÞ ¼
X1
k¼0

ðaÞk ðbÞk
ðcÞk

zk

k!
;
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where (x)0 = 1 and (x)k = x(x + 1)� � �(x + k � 1) for k = 1,2,. . . The fact that the
kth term of this series tends to zero practically like zk when jzj < 1, suggests

that some of the power series representations of Hm(t) can also be used to com-

pute Hm(t) for noninteger m. The details follow.

By the fact that H0
mðtÞ ¼ ðsin ptÞm is symmetric with respect to t = 1/2,

we have that Hm(t) = Hm(1) � Hm(1 � t) for t 2 [1/2,1] and thus Hm(1) =
2Hm(1/2) as well. Thus, it is enough to know Hm(t) for t 2 [0,1/2].

Consequently,

wmðtÞ ¼
HmðtÞ

2Hmð1=2Þ
for t 2 ½0;1=2�; wmðtÞ ¼ 1�wmð1� tÞ for t 2 ½1=2;1�:

Therefore, it is enough to consider the computation of Hm(t) only for t 2 [0,

1/2].
We first have

HmðtÞ ¼
ð2SÞmþ1

pðmþ 1Þ F
1

2
� 1

2
m;

1

2
mþ 1

2
;
1

2
mþ 3

2
; S2

� 	
; S ¼ sin

pt
2
: ðB:6Þ

Now, the terms in the expansion of F 1
2
� 1

2
m; 1

2
mþ 1

2
; 1
2
mþ 3

2
; S2

� �
in powers

of S2 are all of the same sign for kP b(m + 1)/2c. In addition, the kth term is

O(k�(m+3)/2S2k) as k! 1 and, by the fact that 0 6 S 6 sinðp=4Þ ¼ 1=
ffiffiffi
2

p
when

t 2 [0,1/2], it is O(k�(m + 3)/22�k) at worst. This gives us a quickly converging

expansion for Hm(t) that can be used for the actual computation of Hm(t). Fur-

thermore, we can also use a nonlinear sequence transformation, such as that of

Shanks [16] (or the equivalent �-algorithm of Wynn [25]) or of Levin [11], to

accelerate the convergence of this expansion. Both transformations are treated

in detail in the recent book by Sidi [20].

Next, we have

HmðtÞ ¼
2T

pðmþ 1Þ
2T

1þ T 2

� 	m

F 1;
1

2
� 1

2
m;

1

2
mþ 3

2
;�T 2

� 	
; T ¼ tan

pt
2
:

ðB:7Þ

The kth term, in the expansion of F 1; 1
2
� 1

2
m; 1

2
mþ 3

2
;�T 2

� �
in powers of T2 is

O(k�m�1T2k) as k ! 1. Consequently, this expansion converges slowly for t

close to 1/2 because T ! 1 as t ! 1/2. However, it is an essentially alternating

series since its terms, for kP b(m + 1)/2c, alternate in sign. Consequently, we
can apply to it the Shanks or the Levin transformation and obtain its sum

to machine precision using a very small number of its terms, and in an abso-

lutely stable fashion. Indeed, using the Levin transformation, Hm(t) can be

computed with an accuracy of almost thirty five digits by using only the first

twenty five terms of the expansion of F 1; 1
2
� 1

2
m; 1

2
mþ 3

2
;�T 2

� �
.
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Appendix C. Convergence of the trapezoidal rule with extended class Sm

transformations

In this appendix, we summarize the results of [22] concerning the conver-

gence of the trapezoidal rule in conjunction with variable transformations in

the extended class Sm. In the sequel, we will call the extended class Sm simply
the class Sm.

Theorem C.1. Let the function f(x) be in C1(0,1), and assume that f(x) has the

asymptotic expansions

f ðxÞ �
X1
s¼0

csxcs as x ! 0þ; f ðxÞ �
X1
s¼0

dsð1� xÞds as x ! 1� :

Here cs and ds are distinct complex numbers that satisfy

� 1 < Rc0 6 Rc1 6 Rc2 6 � � � ; lim
s!1

Rcs ¼ þ1;

� 1 < Rd0 6 Rd1 6 Rd2 6 � � � ; lim
s!1

Rds ¼ þ1:

Assume furthermore that, for each positive integer k, f(k)(x) has asymptotic

expansions as x ! 0+ and x ! 1� that are obtained by differentiating those
of f(x) term by term k times. Let I ½f � ¼

R 1

0
f ðxÞdx, and let us now make the trans-

formation of variable x = w(t), where w 2 Sm, in I[f]. Finally, let us approximate

I[f] via the trapezoidal rule bQn½f � ¼
Pn�1

i¼1 f wðihÞð Þw0ðihÞ, where h = 1/n,

n = 1,2, . . . Then the following hold:

(i) In the worst case,bQn½f � � I ½f � ¼ Oðhðxþ1Þðmþ1ÞÞ as h ! 0; x ¼ minfRc0;Rd0g:
(ii) Let us merge the sets C = {c0,c1, . . .} and D = {d0,d1, . . .} to obtain the set

B = {b0,b1, . . .}, such that (i) bs are distinct, (ii) Rb0 6 Rb1 6 � � �, and (iii)
a 2 B if and only if a 2 C or a 2 D. Then, if b0 is real, and if m = (q�b0)/
(1 + b0), where q is an arbitrary even integer, then the preceding result is

improved to read at worstbQn½f � � I ½f � ¼ Oðhðb1þ1Þðmþ1ÞÞ as h ! 0:

Thus, in case c0 and d0 are real and c0 = d0, hence b0 = c0 = d0, there holdsbQn½f � � I ½f � ¼ Oðhðxþ1Þðmþ1ÞÞ as h ! 0; x ¼ minfRc1;Rd1g:
Remark. The fact that w(t) � atm+1 as t ! 0+ implies that, when m is large, the

abscissas of the rule bQn½f �, namely, xi � w(ih) = w(i/n) in the original variable

of integration x, are clustered in two very small regions, one to the right of

x = 0 and the other to the left of x = 1, many of them being very close to 0
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and to 1. The amount of this clustering is determined by the size of m; the larger

m, the larger the density of the xi near x = 0 and x = 1. As the clustering gets

larger, the numerical computation of the rule bQn½f � in finite-precision arithme-

tic may become problematic due to possible underflows and overflows in

case f(x) has endpoint singularities. From this, we conclude that too much

clustering is not desirable. Thus, for a given m (that is, for a given
amount of clustering), we would like to get as high an accuracy as possible

out of bQn½f �.

The situations described in the corollary below arise, for example, in case

f(x) is infinitely differentiable on [0,1]. The quality of bQn½f � in this corollary
is best possible, by the preceding remark.

Corollary C.2. Assume f(x) is as in Theorem C.1, and let the bi be as in part (ii)

there.

(i) In case b0 = 0 and b1 = 1, if we choose m to be an even integer, we havebQn½f � � I ½f � ¼ Oðh2mþ2Þ as h ! 0.

(ii) In case b0 = 1 and b1 = 2, if we choose 2m to be an odd integer, we havebQn½f � � I ½f � ¼ Oðh3mþ3Þ as h ! 0.

(iii) In case b0 = 1 and b1 = 3, if we choose 2m to be an odd integer, we havebQn½f � � I ½f � ¼ Oðh4mþ4Þ as h ! 0.

Note that part (i) of the corollary applies when jf(0)j + jf(1)j5 0 and

jf 0(0)j + jf 0(1)j 5 0. Part (ii) applies when f(0) = f(1) = 0, jf 0(0)j + jf 0(1)j5 0,

and jf 00(0)j + jf 00(1)j 5 0. Part (iii) applies when f(0) = f(1) = 0, jf 0(0)j + jf 0(1)j
5 0, f00(0) = f00(1) = 0, and jf 000(0)j + jf 000(1)j 5 0.

Thus, the result of part (i) of Corollary C.2, despite being quite good, is nev-

ertheless inferior to those of parts (ii) and (iii). That is, the best accuracy that

can be achieved by bQn½f � when jf(0)j + jf(1)j 5 0 and jf 0(0)j + jf 0(1)j 5 0 is less
than those achieved when f(0) = f(1) = 0. The next theorem shows how this sit-

uation can be improved in a simple way.

Theorem C.3. Assume f(x) is in C1[0,1], and that jf(0)j + jf(1)j 5 0, that is, at

least one of f(0) and f(1) is nonzero. Let p(x) be the linear function that

interpolates f(x) at x = 0 and x = 1, and let u(x) = f(x) � p(x). Next, transform

the variable x in the integral
R 1
0
uðxÞdx via x = w(t), where w 2 Sm, and

approximate the transformed integral by the trapezoidal rule. Denote the
resulting approximations by bQn½u�. Then

bQn½u�þ
1

2
½f ð0Þþ f ð1Þ�

� �
� I ½f � ¼

Oðh3mþ3Þ as h! 0; if 2m odd integer;

Oðh2mþ2Þ as h! 0; otherwise:

(
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In case only one of f(0) and f(1) vanishes, and a few other special conditions

hold, we can use another approach, quite different from that described in The-

orem C.3. We give this approach next. Note the unusual application of the

class Sm transformations.
Theorem C.4. Assume f 2 C1[0,1], and that only one of f(0) and f(1) vanishes.

Let f(0) = 0, without loss of generality, and assume that f(i)(0) = 0 for

2 6 i 6 j�1, and f(j)(0) 5 0 for some j P 2. Assume also that f(2k+1)(1) = 0,

k = 0,1, . . . Let w(t) be in Sm for some m, and transform the variable x via

x ¼ �wðtÞ ¼ 2wðt=2Þ. Thus,

I ½f � ¼
Z 1

0

f ðxÞdx ¼
Z 1

0

�f ðtÞdt;

�f ðtÞ ¼ f �wðtÞ
� �

�w
0ðtÞ ¼ f 2wðt=2Þð Þw0ðt=2Þ:

Let

�Qn½f � ¼ h
Xn�1

i¼1

�f ðihÞ þ 1

2
�f ð1Þ

" #
; h ¼ 1

n
:

Then, whether f 0(0) 5 0 or not,

�Qn½f � � I ½f � ¼
O hðjþ1Þðmþ1Þ� �

as h ! 0; if 2m odd integer;

Oðh2mþ2Þ as h ! 0; otherwise:

(
Thus, when 2m is an odd integer, �Qn½f � � I ½f � ¼ Oðh3mþ3Þ as h ! 0, at worst. In

case f 0(0) = 0, the result above can be refined as follows:

�Qn½f � � I ½f � ¼
O hðjþ2Þðmþ1Þ� �

as h ! 0; if ðjþ 1Þðmþ 1Þ odd integer;

O hðjþ1Þðmþ1Þ� �
as h ! 0; otherwise:

(

Thus, in case f 0(0) = 0, when (j + 1)(m + 1) is an odd integer, �Qn½f � � I ½f � ¼
Oðh4mþ4Þ as h ! 0, at worst.

Note that, under the transformation �wðtÞ, the transformed abscissas

xi ¼ �wði=nÞ are clustered in a small right neighborhood of x = 0; no clustering

takes place near x = 1.

In connection with the use of �wðtÞ ¼ 2wðt=2Þ as the variable transformation

in Theorem C.4, it is interesting to note that, under the condition that

f(2k+1)(1) = 0 for all kP 0, there is no contribution to the expansion of
�Qn½f � � I ½f � as h ! 0 from the endpoint x = 1. This is so for all values of m.

In case f(0) 5 0 and f(1) = 0 in Theorem C.4, we write I ½f � ¼
R 1

0
gðxÞdx, with

g(x) = f(1 � x), and apply the method described there with f(x) replaced by

g(x).
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